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Abstract—Human approach to experience is based on making 

decision in a natural uncertain environment by incomplete 

knowledge. Even Stochastic vs. Combinatorically Optimized Noise 

generation ambiguity emphasizes the major double-bind problem in 

current most advanced instrumentation systems, just at the inner core 

of human knowledge extraction by experimentation in science. To 

grasp a more reliable representation of reality and to get more 

effective physical and biological simulation techniques, researchers 

and scientists need two intelligently articulated hands: both stochastic 

and combinatorial approaches synergistically articulated by natural 

coupling. The first attempt to identify basic principles to get stronger 

simulation solution for scientific application has been developing at 

Politecnico di Milano University since the end of last century. The 

fundamental principles on computational information conservation 

theory (CICT), for arbitrary-scale system modeling and simulation 

from basic generator and relation through discrete paths denser and 

denser to one another, towards a never ending "blending quantum 

continuum," are recalled. Four examples are presented and discussed. 

This paper is a relevant contribute towards arbitrary-scale physical 

and biological systems modeling and simulation, to show how CICT 

can offer stronger and more effective system modeling algorithms for 

more reliable simulation. 

 

Keywords—CICT, information geometry, arbitrary-scale 

system simulation, wellbeing.  

I. INTRODUCTION 

UMAN approach to experience extraction is based on 

making decision in a natural uncertain environment by 

incomplete knowledge. The amount of information an 

individual can acquire in an instant or in a lifetime is finite, 

and minuscule compared with what the milieu presents [1]. 

The proliferation of new sciences extends our powers of sense 

and thought, but their rigorous techniques and technical 

language hamper communication; the common field of 

knowledge becomes a diminishing fraction of the total store, 

by the use of peculiar language and symbols, due to  

information segregation and dissipation. Even Stochastic vs. 

Combinatorically Optimized Noise generation ambiguity 

emphasizes the major information double-bind (IDB) problem 
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in current most advanced instrumentation systems, just at the 

inner core of human knowledge extraction by experimentation 

in science [2]. In fact, even the most sophisticated 

instrumentation system is completely unable to reliably 

discriminate so called "random noise" (RN) from any 

combinatorically optimized encoded message, called 

"deterministic noise" (DN) [3]. Statistical and applied 

probabilistic theory is the core of classic scientific knowledge; 

it is the logic of "Science 1.0"; it is the traditional instrument 

of risk-taking. Unfortunately, the "probabilistic veil" can be 

very opaque computationally, in a continuum-discrete 

environment, and misplaced precision leads to information 

dissipation and confusion [4]. To develop resilient and 

antifragile application and simulation, we need stronger 

biological and physical system correlates; in other words, we 

need asymptotic exact global solution panoramas combined to 

deep local solution computational precision with information 

conservation and vice-versa.  

 

II. THE ROOT OF THE PROBLEM 

The most fundamental concept of Mathematical Analysis is 

that of the function. Two sorts of functions are to be 

distinguished. First, functions in which the independent 

variable x may take every possible value in a given interval; 

that is, the variable is continuous. These functions belong to 

the domain of Infinitesimal Calculus (IC). Secondly, functions 

in which the independent variable x takes only given values; 

then the variable is discontinuous or discrete. In the same way, 

we talk of continuous probability distribution and discrete 

probability distribution. Unfortunately, to discrete variable the 

methods of IC are NOT applicable. To deal with discrete 

variables, we need the Finite Differences Calculus (FDC). The 

origin of this Calculus may be ascribed to Taylor [5], but the 

real founder of the theory was Jacob Stirling [6], who solved 

very advanced questions, and gave useful methods. 

Introducing the famous Stirling numbers, he paved the way 

even to an important part of modern combinatorics. To grasp a 

more reliable representation of reality and to get stronger 

biological and physical system correlates, researchers and 

scientists need two intelligently articulated hands: both 

stochastic and combinatorial approaches synergistically 

articulated by natural coupling [2]. The former, applied to all 

branches of human knowledge under the "continuum 
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hypothesis" assumption, has reached highly sophistication 

level, and a worldwide audience. Many "Science 1.0" 

researchers and scientists up to scientific journals assume it is 

the ultimate language of science. The latter, less developed 

under the "discrete hypothesis" assumption in specific 

scientific disciplines, has been considered in peculiar 

application areas only. It has been further slowly developed by 

a few specialists and less understood by a wider audience. 

Let’s say we need a fresh "Science 2.0" approach. 

Unfortunately, the above two mathematical research areas 

have followed separate development paths with no articulated 

synergic coupling. In the past, many attempts to arrive to a 

continuum-discrete unified mathematical approach have been 

proposed, all of them with big operational compromises, and 

we can go back at least to the introduction of the Riemann–

Stieltjes integral, published in 1894 by Dutch mathematician 

Thomas Joannes Stieltjes (1856–1894) [7], which unifies sums 

and integrals. 

Every approach that uses analytical function applies a top-

down (TD) point-of-view (POV) implicitly. These functions 

belong to the domain of IC. From a system computational 

perspective, all approaches that use a TD scale-free POV 

allow for starting from an exact global solution panorama of 

analytic solution families, which offers a shallow local solution 

computational precision to real specific needs (in other words, 

from global to local POV overall system information is not 

conserved, as misplaced precision leads to information 

dissipation [3],[4]). In fact, usually  further analysis and 

validation (by probabilistic and stochastic methods) is 

necessary to get localized computational solution of any 

practical value, in real application. A local discrete solution is 

worked out and computationally approximated as the last step 

in their line of reasoning, that started from an overall 

continuous system approach (from continuum to discrete ≡ TD 

POV). Unfortunately, the IC methods are NOT applicable to 

discrete variable. To deal with discrete variables, we need 

FDC. FDC deals especially with discrete functions, but it may 

be applied to continuous function too. As a matter of fact, it 

can deal with both discrete and continuous categories 

conveniently. In other words, if we want to achieve an overall 

system information conservation approach, we have to look for 

a convenient bottom-up (BU) scale-relative POV (from 

discrete to continuum view ≡ BU POV) to start from first, and 

NOT the other way around! Then, a TD POV can be applied, 

if needed. Current human made application and system can be 

quite fragile to unexpected perturbation because Statistics can 

fool you, unfortunately. Deep epistemic limitations reside in 

some parts of the areas covered in risk analysis and decision 

making applied to real problems [4]. We need tools able to 

manage ontological uncertainty more effectively [8],[9]. 

Current computational system modelling and simulation has to 

face and to overcome two orders of issues at least, 

immediately: 

 

1- To develop stronger, more effective and reliable 

correlates by correct arbitrary multi-scale (AMS) modelling 

approach for complex system [10]; 

 

2- To minimize the traditional limitation of current digital 

computational resources that are unable to capture and to 

manage even the full information content of a single Rational 

Number Q leading to information dissipation and opacity 

[11],[12].  

 

III. CICT 

The first attempt to identify basic principles, to 

synergistically articulate Computational Information 

Conservation Theory (CICT) by natural coupling to Geometric 

Theory of Information (GTI) [13] and Information Geometry 

(IG) [14], for scientific research and application, has been 

developing at "Politecnico di Milano University" since the end 

of last century. In 2013, the basic principles on CICT, from 

discrete system parameter and generator, appeared in literature 

and a brief introduction to CICT was given in 2014 [2].  

Traditional Number Theory and modern Numeric Analysis 

use mono-directional interpretation (left-to-right, LTR) for Q 

Arithmetic single numeric group generator, so information 

entropy generation cannot be avoided in contemporary 

computational algorithm and application. On the contrary, 

according to CICT, it is quite simple to show information 

conservation and generator reversibility (right-to-left, RTL), 

by using basic considerations only.  

To better understand the CICT fundamental relationship that 

tie together numeric body information of divergent and 

convergent monotonic power series in any base (in this case 

decimal, with no loss of generality) with D ending by digit 9 is 

given by the following correspondence equation [3]: 
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where D  is the additive 10
W

 complement of D, i.e. D  = (10
W

 

- D), W is the word representation precision length of the 

denominator D and "Div" means "Divergence of". Further 

generalizations related to D ending by digit 1 or 3 or 7 are 

straightforward. Furthermore, When D  > D the formal power 

series on the left of (01) can be rescaled modD, to give 

multiple convergence paths to 1/D, but with different 

"convergence speeds." The total number of allowed 

convergent paths, as monotonic power series, is given by the 

corresponding QL value, at the considered accuracy level L 

[11]. So, increasing the level of representation accuracy, the 

total number of allowed convergent paths to 1/D, as monotonic 

power series (as allowed conservative paths), increases 

accordingly and can be counted exactly, and so on, till 

maximum machine word length and beyond: like discrete 

quantum paths denser and denser to one another, towards a 

never ending "blending quantum continuum," by a TD 

perspective. Rational representations are able to capture two 

different type of information at the same time, modulus (usual 

quotient information) and associated inner or intrinsic period 

information which an inner phase can be computed from. So, 

rational information can be better thought to be isomorphic to 
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vector information rather than to usual scalar one, at least. 

Furthermore, our knowledge of RFD QL and corresponding 

RFD RL can allow reversing numeric power convergent 

sequence to its corresponding numeric power divergent 

sequence uniquely. Reversing a convergence to a divergence 

and vice-versa is the basic property to reach information 

conservation, i.e. information reversibility, as from (01). CICT 

results have been presented in term of classical power series to 

show the close relationships to classical and modern control 

theory approaches for causal continuous-time and discrete-

time linear systems [12].  

Traditional digital computational resources are unable to 

capture and to manage not only the full information content of 

a single Real Number R, but even Rational Number Q is 

managed by information dissipation. In numeric representation 

of Rational Number Q, rational proper quotient is represented 

by infinite repetition of a basic digit cycle, called “reptend” 

(the repeating decimal part). Let us consider fraction 1/D, 

where D in Z, called Egyptian fraction, with no loss of 

generality for common fraction. According to CICT, the first 

repetition of basic digit cycle of max length L corresponds to 

the first full scale interval where number information can be 

conserved completely, and is called "Representation 

Fundamental Domain" (RFD) [11]. Elementary number theory 

considerations give us worst case RFD word length L = D – 1 

digits, if and only if 10 (by decimal base representation 

system, with no loss of generality) is a primitive root modulo 

D. Otherwise L is a factor of "D - 1." If the period of the 

corresponding repeating decimal to 1/D for prime D is equal to 

"D – 1", then the repeating decimal part is called "cyclic 

number" and D can be referred as "primitive number" or solid 

number (SN) [11] or "full reptend prime" elsewhere. Thus a 

SN is necessarily prime. It is a sufficient qualification. 

Conversely a prime number may not be a SN. In classical 

arithmetic long division algorithm (the one you learn to divide 

at elementary school), usual dominant result (quotient, Q) is 

important, and traditionally minority components (remainders, 

R) are always discarded. What a waste! In fact, CICT shows 

that Remainder RL, at any division computation evolutive stage 

L, is the fixed multiplicative ratio of a formal power series 

associated to optimal decimal representations of 1/D, at 

increasing arbitrary accuracy levels.  

In 2013, CICT showed that long arithmetic division 

minority components (Remainders, R), for long time concealed 

relational knowledge to their dominant result (Quotient, Q), 

not only can always allow quotient regeneration from their 

remainder information to any arbitrary precision, but even to 

achieve information conservation and entropy minimization, in 

systems modelling and post-human cybernetic approaches 

[11],[15]. According to CICT optimized infocentric 

worldview, symmetry properties play a fundamental role and 

affect word level structures and properties in analogous way to 

phoneme level and syllable level properties which create 

"double articulation" in human language, at least 

[16],[17],[18]. Therefore, traditional Q Arithmetic can be 

regarded as a highly sophisticated open logic, powerful and 

flexible optimized "OpeRational" (OR) LTR and RTL formal 

numeric language of languages, with self-defining consistent 

words and rules, starting from self-defined elementary 

generator and relation, based on recursively self-defining atom 

[11]. For instance, at any LTR computation stage, with 

remainder knowledge only, it is always possible to regenerate 

exact quotient and new remainder information at any arbitrary 

accuracy, with full information conservation. It is like to 

process tail information to regenerate the associated body 

information. Thanks to the above properties, the division 

algorithm can become free from trial and error like in Finite 

Segment P-adic representation systems, but with no usually 

associated coding burden [11]. The rich operative scenario 

offered by combinatorial modular group theory is full of 

articulated solutions to information processing problems. One 

of the earliest presentations of a group by generator and 

relation was given by the Irish mathematician William Rowan 

Hamilton in 1856, in his Icosian Calculus, a presentation of the 

icosahedral group [19],[20]. Every group has a presentation, 

and in fact many different presentations. A presentation is 

often the most compact way of describing the structure of the 

group. In abstract algebra, the "fundamental theorem of cyclic 

groups" states that every subgroup of a cyclic group G is 

cyclic. Moreover, the order k of any subgroup of a cyclic 

group G of order n is a divisor of n, and for each positive 

divisor k of n, the group G has exactly one subgroup of order 

k. This is just the first step to start an intriguing voyage from 

the concept of "presentation of a group" to the concept of 

"representation theory" for combinatorial modular group 

theory [21]. 

Furthermore, CICT sees rational geometric series as simple 

recursion sequences in a wider recursive operative framework 

where all algebraic recursion sequences of any countable 

higher order include all the lower order ones and they can be 

optimally mapped to rational number system Q OR 

representations and generating functions. For instance, 

arithmetic progression and Lucas sequences are recursion 

sequences of the second order. Lucas sequences are certain 

integer sequences that satisfy Lucas recurrence relation 

defined by polynomials Un(P,Q) and Vn(P,Q), where Un, Vn 

are specific polynomials and P, Q are fixed integer 

coefficients. Any other sequence satisfying this recurrence 

relation can be represented as a linear combination of the 

Lucas sequences Un(P,Q) and Vn(P,Q). Famous examples of 

Lucas sequences include the Fibonacci numbers, Mersenne 

numbers, Pell numbers, Lucas numbers, Jacobsthal numbers, 

and a superset of Fermat numbers. CICT is able to fold any 

recursion sequence of the first order into one digit number D1, 

any recursion sequence of second order into a two digit 

number D2, any recursion sequence of the third order into a 

three digit number D3 and so on to higher orders. Then, you 

can interpret their asymptotic convergence ratios as increasing 

accuracy approximations to related asymptotic roots from 

corresponding first, second, third, ..., n-th order equations 

respectively [8]. 

Thanks to this brand new knowledge and following this line 

of generative thinking, it is possible immediately to realize that 

traditional Q Arithmetic can be even interpreted, by new eyes, 

as a highly sophisticated open logic, powerful and flexible 

LTR and RTL evolutionary, generative, formal numeric 
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language of languages, with self-defining consistent numeric 

words and rules, starting from elementary generator and 

relation (you get your specific formal numeric language by just 

simply choosing your most convenient numeric base to 

polynomially structure your information). American linguist, 

philosopher, cognitive scientist, logician, Avram Noam 

Chomsky’s (1928-) Theory of Syntax came after his criticism 

of probabilistic associative models of word order in sentences 

by Markov process approaches, in 1957 [22],[23]. As a matter 

of fact, since 1951, the inadequacy of probabilistic LTR 

models (Markov process) had already been noticed by 

American psychologist and behaviorist Karl Spencer Lashley 

(1890-1958), who anticipated Chomsky’s arguments [24], by 

observing that probabilities between adjacent words in a 

sentence have little relation to grammaticality of the string. 

Ambiguity too provides a strong indication that sentences 

carry a structure [24]. Eventually, CICT defines an arbitrary-

scaling discrete Riemannian manifold uniquely, under 

hyperbolic geometry (HG) metric, that, for arbitrary finite 

point accuracy level L going to infinity under the criterion of 

scale relativity invariance, is isomorphic (even better, 

homeomorphic) to classic IG Riemannian manifold (exact 

solution theoretically).  

IV. OPERATIVE CONSIDERATIONS 

The classical experimental noise discrimination problem is still 

faced by the single domain channel transfer function concept 

(Shannon’s noisy channel, Fig.1 top diagram), starting from 

classic Shannon’s information theory concept [24], and then 

applying traditional perturbation computational model under 

either additive or multiplicative perturbation hypothesis [25]. 

Our main idea is that an assessment of system fragility (and 

control of such fragility) is more useful, and more reliable, 

than probability risk management and data-based methods of 

risk detection. Main attention focus should not be to attempt to 

predict black swan events, but to build system robustness 

against negative ones that occur and be able to exploit positive 

ones. In the past five decades, trend in Systems Theory, in 

specialized research area, has slowly shifted from classic 

single domain information channel transfer function approach 

(Fig.1 top diagram) to the more structured ODR Functional 

Sub-domain Transfer Function approach (by Observation, 

Description and Representation Functional Blocks, Fig.1 

middle diagram) [12]. Shortly, the ODR approach allows for 

fitting theoretical system design consideration to practical 

implementation needs much better (according to information 

"Input, Processing, Output" paradigm, respectively) than 

classic single domain channel approach, as shown by Fig.1 

middle diagram. As a matter of fact, by iterating full process 

over repeated scale-related controlled "Observations," it is 

possible to improve the accuracy level of any associated 

"Description," validated by a related and endorsed scale 

related "Representation," and therefore to better the overall 

system knowledge extraction process under test: human beings 

call this process "learning by experience." Thanks to the ODR 

approach, a deeper awareness about information acquisition 

and generation limitations by classical experimental 

observation process has been grown. In fact, usual elementary 

arithmetic long division remainder sequences can be even 

interpreted as combinatorically optimized coding sequences 

for hyperbolic geometric structures, as points on a discrete 

Riemannian manifold, under HG metric, indistinguishable 

from traditional random noise sources by classical Shannon 

entropy computation, and current, most advanced 

instrumentation system [3]. Specifically, CICT showed that 

classic Shannon entropy is completely unable to reliably 

discriminate so called computational "random noise" (RN) 

from any combinatorically optimized encoded message by 

OECS, called "deterministic noise" (DN) in [3]. Paradoxically 

if you don’t know the generating process for the folded 

information, you can’t tell the difference between an 

information-rich message and a random jumble of letters. This 

is "the information double-bind" (IDB) problem in 

contemporary classic information and algorithmic theory [3]. 

Therefore, one of the first practical result has been to realize 

that classical experimental observation process, even in highly 

ideal operative controlled condition, like the one achieved in 

current, most sophisticated and advanced experimental 

laboratories like CERN [27], can capture just a small fraction 

only of overall ideally available information from unique 

experiment. The remaining part is lost and inevitably dispersed 

through environment into something we call "background 

noise" or "random noise" usually, in every scientific 

experimental endeavor. The amount of information an 

individual can acquire in an instant or in a lifetime is finite, 

and minuscule compared with what the milieu presents; many 

questions are too complex to describe, let alone solve, in a 

practicable length of time [1]. The same is true for all other 

cascading functional blocks in the ODR transmission channel 

from source to destination, if careful information conservation 

countermeasure is not provided at each step. Traditionally, the 

horizons of accumulating ignorance are expanding faster than 

any person can keep up with. The proliferation of new sciences 

extends our powers of sense and thought, but their rigorous 

techniques and technical language hamper communication; the 

common field of knowledge becomes a diminishing fraction of 

the total store. By biomedical cybernetics point of view, to get 

closer to real computational information conservation, ODR 

Functional Sub-domain Transfer Function block diagram 

(Fig.1 middle diagram) must be completed by a corresponding 

irreducible complementary "ODR Information Channel Co-

domain Diagram" to get reliable strategic overall information 

functional closure (Fig.1 bottom diagram) [12]. Starting at the 

Observation step, interaction between an Experimental Field 

with a scale related Action Domain is established and discrete 

data are captured. Observation is properly described as a fact-

finding rather than a fact-collecting procedure, because the 

idea of finding includes both selection by controlled 

perturbation and efficient structured collection. The quality of 

Observation does then depend on the degree of completeness 

by which experimental folded information is allowed to be 

efficiently captured from our experimental field into our 

subjective structured Action Domain and properly formatted, 

according to observation experience and shared rules (System 

Input Transformation), to be passed to next processing block. 

Then the second step, Description, can format and formalize 
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folded subjective observation into an unfolded systemic 

minimal insured scale precision and/or accuracy 

Representation Domain, to be shared by the majority of 

interacting entities which use the same formal language to 

communicate (Overall System State), to be passed to the last 

step. Finally, the quality of the Representation stage does 

depend on the degree of scale related completeness by which 

unfolded information is allowed to be focused and re-folded to 

be efficiently presented to specific shared, human knowledge 

(System Output Transformation). Then a validation process 

can start and an endorsement can be assigned eventually, 

according to convenient Representation support quality level 

for scientific knowledge synthesis, cultural analytics, 

information/perceptual aesthetics, etc. [11].  

 

 

 
Fig. 1 Top diagram: Traditional Single Domain Channel 

(SDC) Transfer Function. Middle diagram: Decomposition of 

SDC Transfer Function into more structured ODR Functional 

Sub-domain Transfer Function (Observation, Description and 

Representation Functional Blocks). Bottom diagram: ODR 

Information Channel Co-domain Diagram for System 

Information Conservation. 

 

 

The ODR approach has contributed to create deeper 

awareness about traditional information acquisition, 

formalization and reproduction process limitations, 

constrained by classical experimental observation scale 

finiteness and new multimedia data acquisition and 

reproduction implementation. As a matter of fact, traditional 

rational number system Q properties allow to generate an 

irreducible co-domain for every computational operative 

domain used. Then, all computational information usually lost 

by using the classic information approach, based on the 

traditional noise-affected data model stochastic representation, 

can be captured and fully recovered to arbitrary precision by a 

corresponding evolutive irreducible complementary co-

domain, step-by-step. Co-domain information can be used to 

correct any computed result, achieving computational 

information conservation (theoretically, virtually noise-free 

data), according to CICT Infocentric Worldview [3]. A further 

detailed description of the diagrams of Fig.1 far exceeds the 

scope of present discussion and the interested reader is 

referred to [28]. Next section will show four computational 

examples for our CICT approach. 

V. COMPUTATIONAL EXAMPLES 

CICT is a Natural Framework for arbitrary-scale Computer 

Science and Systems Biology Modeling in the current 

landscape of modern Geometric Science of Information (GSI), 

Geometric Algebra (GA) and Geometric Calculus (GC) [29-

32]. We have selected four examples to offer a quick 

panorama of a few CICT fundamental properties to take 

advantage from scale related self-similarity modeling 

(Example No.1) and from scale related coherent polynomial 

closure of power series for information conservation (Example 

No.2). Example No.3 shows how leading zeros in positional 

notation representation system for CICT Q Arithmetic do 

count effectively, and can even model the quantum-classical 

system transition quite efficiently. Finally, Example No.4 

shows that any natural number D in N has associated a 

specific, non-arbitrary external or exterior phase relationship 

to take into account full information conservation. With no 

scale related coherent inner phase information, we get system 

decoherence, entropy generation, information dissipation and 

algorithmic quantum incomputability on real macroscopic 

machines.  

A. Example No.1 

Looking back to geometric series one can see a remarkable 

correspondence to the self-similarity concept. If we formally 

scale the following series S: 
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This is the well-known "self-similarity" property of 

geometric series. The value of the sum S is 0.10  plus the scaled 

down version of the whole series. Naturally, self similarity 

only holds for the limit, but not for any finite stage. For 

example, let us suppose finite stage k = 2: 

 

qqS
2

2 1  , then: 

 

SqqqSqS 2
32

23
11        .                                               (05) 

 

As a simple example, for the sake of simplicity, let us use 

decimal base representation system, with no loss of generality, 

and let us consider q = 3/10 as LTR elementary generator. 

Then, we obtain the following convergent series: 
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as stated previously. 

For finite stage, as we already stated, let us suppose k = 2, 

then: 
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Apparently by finite step we lost self-similarity, the 

fundamental property of geometric series, and this fact may 

seem, at first sight, a strong limitation to proceed further. But, 

self-similarity is still there, just a little less manifest. We can 

turn an apparent limitation into a striking computational 

advantage. In fact, it is possible to conceive an evolutive self-

similar arithmetic correspondence (called complementary 

series or co-series) to original geometric series, step by step, 

which can act as a continuous connection from finite geometric 

power increment to its asymptotic limit to conserve 

characteristic computational information in a coherent way. To 

compute the corresponding LTR (Left To Right) evolutive 

complementary arithmetic co-series (additive complement 

series), we introduce the fundamental concept of "coherent 

correspondence". Therefore, given any single term of original 

geometric series Sk, as sk with an operational representation 

Nk/Dk , its "coherent correspondent term" mc for correspondent 

complementary co-series M1 is given, in this case, by (Dk-

Nk)/(Dk)
2
. So, the correspondent LTR complementary co-series 

M1 of our example is given by: 
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...}/139/13/1/0{7

.../973/91/70

...

101010

10101010

101010

4

2

3

1

2

0

6420

642

321001














SSS

mmmmmM
c

c

.           (09) 

 

As a matter of fact, M1 is just the first co-series of a countable 

family Mr of complementary co-series to original series S, at 

different accuracy level r, given by: 

 

  


 ...,,2,110/
1

0 rSDM
rc

ccr
                                  (10) 

 

where D is the reduced denominator of the limit of original 

series S and Sc is its finite stage sum at stage c. So, in other 

words, each Mr  is an irreducible co-domain, at different 

accuracy level r, for the original domain S. It is immediate to 

verify the following co-series limiting values: 

 

M2 = 7{10
2
/98703} = 7{10

2
/(99*997)}   , 

M3 = 7{10
3
/9987003} = 7{10

3
(999*9997)}   , 

…                                                                                         (11) 

M7 = 7{10
7
/999999870000003} 

      = 7 {10
7
/(9999999*99999997)}   , 

 

and so on. So, in other words, each Mr  represents an 

irreducible co-domain, at accuracy level r, for the original 

domain S, with q = 3/10 as LTR elementary generator, in this 

case. Then, co-domain multiscale evolutive structured 

information, synthesized by its limiting value, can be used for 

deterministic noise source coherent tuning or checking for the 

presence of such specific generator in system "background 

noise." In fact, their numeric limiting values, by elementary 

arithmetic long division algorithm, supply us with cyclic 

remainder sequences perfectly tuned to deterministic source 

generators. By this kind of operational flexibility, a machine 

can generate autonomously, either on-the-fly or in advance 

stored in a-priori knowledge-base, combinatorically optimized 

sequences to check for the presence of suspect "deterministic 

noise sources" in its probing field and then acting accordingly 

to obtain a virtually homogeneous and uniform machine 

experimental reference domain. Following this line of thought, 

it is possible to overcome the dreadful ambiguity and 

limitations of the traditional Shannon entropy concept [25]. 

Our results are presented in term of classical power series to 

show the close relationships to classical and modern control 

theory approaches for causal continuous-time and discrete-

time linear systems. Usually, the continuous Laplace transform 

is in Cartesian coordinates where the x-axis is the Real axis 

[33] and the discrete Z-transform is in circular coordinates, 

where the Rho-axis is mapping the Real axis [34]. 

B. Example No.2 

We use an arbitrary-scalable system top-down approach, i.e. 

from overall system to system components, an so on, arriving 

to single block, single digit computational information 

conservation. In this case, we start with Natural numbers as 

generators, and their geometric powers, to compute their 

coherent functional closures, by using decimal system 

operative representation (r = 10), with no loss of generality. 

To get a coherent functional closure our rule is simple. One 

digit word number to the second power gives two digit number 

word, to the third power gives a three digit number word, to 

the fourth power gives four digit number word, and so on. 

Leading zeroes do count, so you have to fill in all word digits. 

We start with Natural number D = 3 as a generator, and W = 1, 

where W is the word representation precision length of number 

D and k its power exponent. We have: 
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 

 

 

  ,103103...1031033103

9731393100273

9113310093

7131033

01122110

3

333

2

222

1

111

PCD

D

D

D

k

kkkkkkk 











  (12) 

 

where D  is the additive 10
W

 complement of D, i.e. D  = (10
W

 - 

D). On the left column we have the powers of 3 and on the 

right side their corresponding coherent functional closures. It 

is simple to see that for k going to infinity even the asymptotic 

expression in round bracket (…)k ≡ PC from (12) becomes an 

infinite polynomial and therefore an incomputable expression. 

Nevertheless it has quite a definite and unique evolutive 

polynomial structure, easily to be computed exactly to any 

arbitrary precision by CICT [11]:  

 

   





































 142857

7

1010
...lim

D
k

k

    .                    (13) 

 

In fact, from (13), we see that our final result is an infinite 

string of digits, impossible to handle in full by any traditional 

macroscopic real computational machine. Furthermore, the 

overall asymptotic limit of the coherent functional closure is: 

 

    9999991428577
7

10
7

10
...lim 



























 



 D
DD k

k

   .      (14) 

 

Now, it is interesting to appreciate the difference of the 

asymptotic numeric value given by (14), and its corresponding 

value obtained by traditional symbolic computation (i.e. 10
∞
) 

by using the IC scale-free POV. It is an infinitesimal 

difference, but this time we know its evolutive growing law 

precisely, from the discrete to the continuum POV, exactly. It 

is straightforward to arrive to the general relationship for any 

power k of any Natural number D represented by decimal word 

precision length W, as: 

 
     ,1010...101010 01122110

k

WkWkkWkWkkW DDDDDD  

                                                                                             (15) 

 

where D  is the usual additive 10
W

 complement of D, i.e. D  = 

(10
W

 - D). As a matter of fact, CICT rational number system Q 

numeric properties allow to generate an irreducible co-domain 

for every computational operative domain used. Then, all 

computational information usually lost by using classic 

information approach, based on the traditional noise-affected 

data stochastic model only, can be captured and fully 

recovered to arbitrary precision by a corresponding 

complementary co-domain, step-by-step, to obtain a Resilient 

ODR system (RODR, for short), according to CICT 

Infocentric Worldview.[3]  

C. Example No.3 

Usual knowledge on significant figures of a number teaches 

that any 0 digit that comes before the first nonzero digit 

(leading zeros) can be omitted in a number string in positional 

notation representation system [35]. When leading zeros 

occupy the most significant digits of an integer, they could be 

left blank or omitted for the same numeric value [36]. 

Therefore, the usual decimal notation of integers does not use 

leading zeros except for the zero itself, which would be 

denoted as an empty string otherwise [37]. However, in 

decimal fractions between 0.0 and 1.0, the leading zeros digits 

between the decimal point and the first nonzero digit are 

necessary for conveying the magnitude of a number and cannot 

be omitted [35]. Let us introduce a convenient LTR symbolic 

compression operator as SCO ≡ <M│DS>, where DS is a 

finite digit string of length L and M is the number of times DS 

is repeated to get our unfolded digit string in full (e.g. (4│1) ≡ 

1111 or (2│123) ≡ 123123). Usual symbolic string operations 

can be applied to SCO. Then, we can write usual rational 

number OpeRational Representation (OR) corresponding to 

their Symbolic Representation (SR) as [11]: 

 

...001001001001001001001001001001001.0
999

1

3

1
3

...0101010101010101010101.0
99

1

2

1
2

...11111111111.0
9

1

1

1
1







D
Q

D
Q

D
Q

          (16) 

 

in a more compact RFD QL format as: 

 







001.0
999

1

3

1
3

01.0
99

1

2

1
2

1.0
9

1

1

1
1

D
Q

D
Q

D
Q

   .                                               (17) 

 

In the same way, we can write for Solid Number (SN) D4 = 7 

[11]: 

 





142857.0
7

1

4

1
4

as...857142857714285714242857142851.0
7

1

4

1
4

D
Q

D
Q

   .     (18) 

 

On the other hand, we have: 

 

.form)compressedsecond(or)7105(.0
142857

1

5

1
5

form)compressedfirst(either000007.0
142857

1

5

1
5

aswritten...000700000707000007000000070000.0
142857

1

5

1
5







D
Q

D
Q

D
Q

                                                                                             (19) 

 

Now, we can realize that Q4 RFD is related by Q5 RFD and 

vice-versa by periodic scale relativity (precision length) L = 6. 

So, to conserve the full information content of rational 

correspondence between Q4 and Q5, we realize that we have 

to take into account not only the usual Q4 and Q5 modulus 

information, but even their related periodic precision length 

information L = 6 (external world representation phase). As far 
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as it concerns D5 it comes almost automatically from previous 

example (see (19)), but the same it is not true for D4 (see (18)) 

because we wrote digit 7 only as denominator, without its five 

leading zeros, according to traditional knowledge on 

significant figures of a number. In that way, we lose the 

rational correspondence intrinsic period information 

(coherence) which an inner relative phase for each RTL string 

generator can be computed from (i.e. from their optimized 

exponential cyclic sequences (OECS) of RL [11]). With no 

scale related coherent inner phase information, we get system 

decoherence, entropy generation and information dissipation. 

In fact, misplaced precision leads to information opacity, 

fuzziness, irreversibility, chaos, complexity and confusion. 

Therefore, rational information can be better thought to be 

isomorphic to vector information rather than to usual scalar 

one, at least. Now, from (19) second compressed form, it is 

immediate to verify the following phase relations: 

 














...,,3,2,1Nfor)710)1N(65(.0
142857N

1

N

1
N

)71017(.0
571428571428571428

1

3

1
3

)71011(.0
571428571428

1

2

1
2

)7105(.0
142857

1

1

1
1

DD
QQ

DD
QQ

DD
QQ

DD
QQ

. 

                                                                                             (20) 

Therefore, we can write the following relation: 

 




 142857.0
)710(

1

4

1
4

CD
CQ

.          (21) 

 

According to our SCO approach, the coherent representation 

CD4 emerges out of an LTR infinity of symbolic structured 

infinite length sequences as in (21). By this point of view, 

traditional natural numbers, according to human common 

knowledge, appear as just the rightmost approximated part of 

those sequences. So, CD4 in (21) is the correct coherent 

relation representation of traditional scalar modulus D4 in (18) 

as denominator, while scalar modulus D4 in (17) can be 

interpreted as the decoherenced relation representation of CD4 

denominator in (21). Leading zeros in positional notation 

representation system for CICT Q Arithmetic do count 

effectively, and can model the quantum-classical system 

transition quite efficiently. Finally, our knowledge of RFD QL 

and corresponding RFD RL can allow reversing LTR numeric 

power convergent sequence to its corresponding RTL numeric 

power divergent sequence uniquely [11]. Reversing a 

convergent sequence into a divergent one and vice-versa is the 

fundamental property to reach information conservation, i.e. 

information reversibility. Eventually, OECS have strong 

connection even to classic DFT algorithmic structure for 

discrete data, Number-Theoretic Transform (NTT), Laplace 

and Mellin Transforms [3].  

D. Example No.4 

For SN = 7.0 = D [11], to conserve the full information 

content of rational correspondence at higher level, we realize 

that we have to take into account not only the usual modulus 

information, but even the related external or extrinsic RFD 

periodic precision length information W = 6 (numeric period 

or external phase representation) in this case (i.e. D5 ≡ 000007 

as base RFD, and yes for CICT leading zeros do count [31]!). 

We can use Euler's formula to establish the usual fundamental 

relationship between trigonometric functions and the complex 

exponential function: 

 

e
i x

 = cos x + i sinx  , (22)  

 

where e is the base of the natural logarithm and i = √-1. It 

establishes the fundamental relationship between the 

trigonometric functions and the complex exponential function. 

We obtain: 

 
     
















 







 




6

12
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6

12
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7

1

7

1
1 3

12 n
i

n
eCQ

n
i 

 
(23)  

 

and  

 
     
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 
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
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2
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sin
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1

1
1 3
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i
n

i
n

e
CQ

CD
n

i 

p.v.     
(24)  

 

for n = 1, 2, 3, …in N, where p.v. means principal value. 

CICT shows that any natural number D in N has associated a 

specific, non-arbitrary external or exterior phase relationship 

[3] that we must take into account to full conserve its 

information content by computation in direct Euclidean space 

[2]. The interested reader will have already guessed the 

relationship of our result to de Moivre number or root of unity 

(i.e. any complex number that gives 1.0 when raised to some 

integer power of n. In this way, we can exploit Rational 

numbers Q full information content to get effective and 

stronger solutions to current system modelling problems. We 

have shown how to unfold the full information content 

hardwired into Rational OR representation [11] (nano-

microscale discrete representation) and to relate it to an 

assumed continuum framework (meso-macroscale) with no 

information dissipation. CICT phased generator (PG) 

approach [38] combined to GA and GC unified mathematical 

language can offer an effective and convenient ”Science 2.0” 

universal framework, by considering information not only on 

the statistical manifold of model states but also on the 

combinatorial manifold of low-level discrete, phased 

generators and empirical measures of noise sources, related to 

experimental high-level overall perturbation. A synergic 

coupling between GA, GC and CICT [38-40] offers stronger 

arbitrary-scale computational solutions which  unify, simplify, 

and generalize many areas of mathematics that involve 

geometric ideas. 

Scale related, coherent precision correspondence leads to 

transparency, ordering, reversibility, kosmos, simplicity, 

clarity, and, as you saw from previous discussion, to 

algorithmic quantum incomputability on real macroscopic 

machines [9]. CICT fundamental relation (see (1)) allows to 

focus our attention on combinatorically optimized number 

pattern generated by LTR or RTL phased generators and by 

convergent or divergent power series with no further arbitrary 
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constraints on elementary generator and relation. Thanks to 

subgroup interplay and intrinsic phase specification through 

polycyclic relations in each SN remainder sequence, word 

inner generator combinatorial structure can be arranged for 

"pairing" and "fixed point" properties for digit group with the 

same word length [3]. As a matter of fact, those properties 

("pairing" and "fixed point") are just the operational 

manifestation of universal categorical irreducible dichotomy 

hard-wired into integer digit and digit group themselves (i.e. 

"evenness" and "oddness") and to higher level structures (i.e. 

"correspondence" and "incidence"). Actually, since space is 

limited, the discussion here will not be extended further to the 

subgroup interplay of the family group and polycyclic groups. 

We refer the interested reader to good general references on 

polycyclic groups [38],[39].  

VI. CONCLUSION 

The final result is CICT new awareness of a hyperbolic 

framework of coded heterogeneous hyperbolic structures, 

underlying the familiar Euclidean surface representation 

system [40]. CICT emerged from the study of the geometrical 

structure of a discrete manifold of ordered hyperbolic 

substructures, coded by formal power series, under the 

criterion of evolutive structural invariance at arbitrary 

precision. It defines an arbitrary-scaling discrete Riemannian 

manifold uniquely, under hyperbolic geometry (HG) metric, 

that, for arbitrary finite point accuracy level L going to infinity 

under scale relativity invariance, is isomorphic (even better, 

homeomorphic) to classic IG Riemannian manifold (exact 

solution theoretically). In other words, HG can describe a 

projective relativistic geometry directly hardwired into 

elementary arithmetic long division remainder sequences, 

offering many competitive computational advantages over 

traditional Euclidean approach. It turns out that, while free 

generator exponentially growing sequences can be divergent or 

convergent, their closures can be defined in terms of 

polynomials (see Example No.2). Furthermore, 

combinatorically OECS have strong connection even to classic 

DFT algorithmic structure for discrete data, Number-Theoretic 

Transform (NTT), Laplace and Mellin Transforms [3]. In this 

way, even simple scalar moduli can emerge out from 

sequences of phased generators.  

CICT can help to reach a unified vision to many current 

biophysics and physics problems and to find their optimized 

solutions quite easily. Expected impacts are multifarious and 

quite articulated at different system scale level. One of the first 

practical result was that usual elementary arithmetic long 

division remainder sequences can be even interpreted as 

combinatorically optimized coding sequences for hyperbolic 

geometric structures, as point on a discrete Riemannian 

manifold, under HG metric, indistinguishable from traditional 

random noise sources by classical Shannon entropy, and 

contemporary most advanced instrumentation systems. 

Specifically, CICT showed that classical Shannon entropy 

computation is completely unable to reliably discriminate so 

called computational "random noise" from any 

combinatorically optimized encoded message by OECS, called 

"deterministic noise" (DN) in [3]. As a matter of fact, for any 

free generator, CICT can provide us with an "ecoco-domain" 

multiscale evolutive structured family of sequences that can be 

used for checking for the presence of a specific generator in 

laboratory or system "background noise" [3]. Following CICT 

approach, it is possible even to extend the classic Shannon 

entropy concept to arrive to a stronger and specific "Coherent 

Shannon entropy" (CSE) approach. Second result was to 

realize that classical experimental observation process, even in 

highly ideal operative controlled condition, like the one 

achieved in contemporary most sophisticated and advanced 

experimental laboratories like CERN, can capture just a small 

fraction only, with misplaced precision, of overall ideally 

available information from unique experiment. The remaining 

part is lost and inevitably added to something we call 

"background noise" or "random noise" usually, in every 

scientific experimental endeavor. CICT can help us to develop 

strategies to gather much more reliable experimental 

information from single experiment and to conserve overall 

system information. In this way, coherent representation 

precision leads to information conservation and clarity. The 

latest CICT claim has been that the "external" world real 

system physical manifestation properties and related human 

perception are HG scale related representation based, while 

Euclidean approximated locally.  

 

 

 
Fig. 2 Computational Information Conservation Theory 

(CICT) is a Natural Framework for Arbitrary Scale Computer 

Science and Systems Biology Modeling in the current 

landscape of modern Geometric Science of Information (GSI), 

Geometric Algebra (GA) and Geometric Calculus (GC). 

 

 

Furthermore, the fundamental play of human information 

observation interaction with an external world representation is 

related by the different manifestation and representation 

properties of a unique fundamental computational information 

structuring principle: the Kelvin Transform (KT) [3]. KT is 

key to efficient scale related information representation, 

structuring "external space" information to an "internal 

representation" and vice-versa by inversive geometry.  

More generally, CICT is a natural framework for arbitrary-

scale computer science and systems biology modeling in the 

current landscape of modern GSI, GA and GC as depicted in 

Fig.2. Specifically, high reliability organization (HRO), 

mission critical project (MCP) system, very low technological 
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risk (VLTR) and crisis management (CM) system will be 

highly benefitted mostly by these new techniques. This paper 

is a relevant contribute towards arbitrary-scale computer 

science and systems biology modeling, to show how 

computational information conservation can offer stronger and 

more effective system modeling algorithms for more reliable 

simulation to support and enhance even system creativity [44]. 
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